
Specifications

AnaMark tuning file format
(*.tun; *.tun.*; *.msf)

Version 2.00
17th July 2009

Mark Henning, Germany
http://www.mark-henning.de

http://www.mark-henning.de

Contents

1 Introduction 3
1.1 Format history and Compatibility . 3

2 Basic file structure 5
2.1 Sections . 5
2.2 Key-value pairs . 6
2.3 Function calls . 7

3 The sections 8
3.1 Overview . 8
3.2 Begin and end of a scale dataset . 9

3.2.1 Section [Scale Begin] . 9
3.2.2 Section [Scale End] . 9
3.2.3 Files containing multiple scales (*.MSF files) 9
3.2.4 Embedding scales in e.g. HTML 10

3.3 Section [Info] . 12
3.4 Section [Assignment] . 14
3.5 Section [Tuning] . 15
3.6 Section [Exact Tuning] . 16

3.6.1 Auto completion (Periodic scales) 16
3.6.2 Example of a valid section . 17

3.7 Section [Functional Tuning] . 17
3.7.1 Formula syntax . 18
3.7.2 Formula command tokens . 20

3.8 Section [Mapping] . 22
3.9 Section [Editor Specifics] . 23

4 Acknowledgments 24

2

1 Introduction

The tuning file format is a capable yet simple format for scale data (→micro tuning).
Advantages:

• Easy implementation of read/write functionality: In most cases there is no need
to implement the complete specifications!

• Database functionality: additional informations associated with the scale

• Multiple scales per file: scales can be assigned to MIDI channels

• Embedding functionality: data can be embedded directly into e.g. HTML

Restrictions (mainly one):

• Limited editing: The format provides some algorithmic capabilities to build a
scale. However, it is not intended for scale editing as each scale editor has its
own specific features.

Free C++ source code for reading/writing AnaMark tuning files as well as open
source tools for editing and converting them is available for download at:

http://www.mark-henning.de/eternity/tuningspecs.html

1.1 Format history and Compatibility

• Version 0:
The software synthesizer VAZ 1.5 Plus by Software Technology1 used a very
basic implementation of .tun files.

The format contained only the section [Tuning] and thus had some essential
shortcomings which hindered it from spreading.

• Version 1:
Extended tuning file format used in the VSTi software synthesizer AnaMark by
Mark Henning2. This tuning file format became one of the most used formats.

1http://www.software-technology.com
2http://www.mark-henning.de

3

http://www.mark-henning.de/eternity/tuningspecs.html
http://www.software-technology.com
http://www.mark-henning.de

1 Introduction

Version 1 is downwards compatible (thus called AnaMark/VAZ 1.5 Plus tuning
file format), and contains the new section [Exact Tuning] allowing exact tuning
specification and the definition of a base frequency. The specifications and
example source code for reading/writing are available for free.

The present format specification (version 2.00, called AnaMark tuning file) is mostly
downwards compatible. Minor compromises were necessary due to current needs,
but most files should work with older software.3

3You may use the free TUN-Tools available at
http://www.mark-henning.de/eternity/tuningspecs.html
to convert between the different format versions.

4

http://www.mark-henning.de/eternity/tuningspecs.html

2 Basic file structure

• Files are 8-Bit ASCII.

• Max. line length 1 000 000 bytes1

• Allowed line delimiters are: 0x00, 0x0a, 0x0d. rightarrow WIN/DOS-style as
well as UNIX-style files may be used.

• If in these specs parts of the file are declared as "to be ignored", consider that
these parts may have any content, of any syntax. So you should really ignore
them, especially do not perform syntax checking there.

• Leading/trailing white spaces have to be removed before further processing a
line.

• Empty lines are ignored

• Lines beginning with a ’;’ are comment lines. They are ignored.

• The file is subdivided into sections. Lines beginning with a ’[’ mark the start of a
new section. A section may (but does not have to) contain key-value definitions
and/or function calls.

2.1 Sections

A section start has the format

[sectionname]

where the section name sectionname is not case sensitive. There are section names
defined with blanks within, e.g. [Exact Tuning]. The string [sectionname] must be
the one and only string in the line, there must be no leading/following characters.

All lines preceeding the first section of a file have to be ignored. The content of
unknown sections has to be ignored. These cases may produce a warning, but not an
error.

1For downwards compatibility: It is recommended to keep lines below 255 characters, which was the
limit in the version 1 specifications.

5

2 Basic file structure

A section ends, when the next section starts or the file end is reached.
Within one scale dataset (see 3.2 for details), a section must not be repeated / divided

into several parts. So this would not be O.K.:

[Section1]
; Content of Section1

[Section2]
; Content of Section2

[Section1]
; ERROR, because Section1 is repeated

2.2 Key-value pairs

Unless specified otherwise, within sections key values are set using

key = value

where key denotes the name of the key; it is not case sensitive. value represents the
value assigned to the key. The key must begin with an underscore or a normal letter
(a–z). The first ’=’ in the line separates key and value.2

NOTE: Key names may contain white spaces within. White spaces within key names
act as separators and are used e.g. when a key refers to an array of values, e. g.:

note 1 = 100
note 2 = 200
note 3 = 300
; ... and so on ...

IMPORTANT: Key assignments have to be done immediately in the order they occur
in the file.

The formatting of the values is key specific, but always single-line. Typical formats
are:

• integer values: written as plain integer number e.g.

keyA = 123
keyB = -123

• float values: written as integer or as plain floating point number, e.g.

2A line may contain more than one ’=’, e. g. if the value is a string!

6

2 Basic file structure

keyA = 123.45
keyB = -123.45

• scientific values: written as float value or as plain scientific numbers, e.g.

keyA = 1.23e2
keyB = -1.23e-2

• string values: enclosed in quotation marks using C-style conversions of special
characters, e.g.

keyA = "\n line break, \t tabulator and hex ch\0x41racter"

• string list entry: written as string value

Keys specifying string lists can be written multiple times. Each value is appended
at the end of the string list, e.g.

keyA = "Hello"
keyA = "how are"
keyA = "you?"

This results in the string list keyA containing the three entries "Hello", "how are"
and "you?".

Key values are section specific. The key KeyA in Section [SectionA] is thus different
from the key KeyA, but located in Section [SectionB].

IMPORTANT: Unknown keys and their values have to be ignored. This may produce
a warning, but not an error.

2.3 Function calls

Within sections functions are called using

function = (parameters)

where function denotes the name of the function. The same syntax than that of key-
value pairs is used here (see 2.2). The only difference is that the value is enclosed in
round brackets containing no, one or several values (separated by ’,’).

7

3 The sections

3.1 Overview

In the table below, sections are labelled "‘recommended"’, if their inclusion in the file
is optional due to downwards compatibility. The abbreviations are:

REQ Required

rec Recommended

opt Optional

Section/
required key Content Existence Since

Scale Begin Start of a scale dataset REQ V2.00
Format = "AnaMark-TUN" V2.00
FormatVersion = "200" V2.00
FormatSpecs = "http:\\www.mark-henning.de\ ; V2.00

eternity\tuningspecs.html"

Info Informations about the scale REQ V2.00
Name Name of the scale V2.00
ID Scale identifier V2.00

Assignment Assign scale to a MIDI channel opt V2.00

Tuning Quantized scale (cents) rec V0.00
note x note tuning (cents) V0.00

Exact Tuning Exact scale (cents), base frequency (Hz) rec V1.00

Functional Tuning Algorithmic scale definition REQ V2.00

Mapping Keyboard mapping opt V2.00

Editor Specifics Editor specific settings opt V2.00

Scale End End of a scale dataset REQ V2.00

8

3 The sections

3.2 Begin and end of a scale dataset

3.2.1 Section [Scale Begin]

<Required in version 2.00> A scale dataset must start with the section

[Scale Begin]

It contains the following keys:

• Format = string value <required>

Default value: "AnaMark-TUN"

This identifier declares the format of the following scale dataset. To indicate a
format according to the present specs, set the value to "AnaMark-TUN".

• FormatVersion = integer value <required>

Default value: 100

Format version. To indicate a format according to the present specs, set the value
to 200. The value 100 denotes AnaMark/VAZ 1.5 Plus tuning file format (version
1 tuning files).

• FormatSpecs = string value <required>

Default value: "http:\\www.mark-henning.de\eternity\tuningspecs.html"

Links to the website containing the official format specs. The URL for these specs
is http:\\www.mark-henning.de\eternity\tuningspecs.html.

3.2.2 Section [Scale End]

<Required in version 2.00> A scale dataset must end with the section

[Scale End]

The content of this section has to be ignored.

3.2.3 Files containing multiple scales (*.MSF files)

It is possible to put several scale datasets within one file. This allows building databases
or — using the section [Assignment] (see 3.4) — files containing multiple scales which
are assigned to different MIDI channels. There is no restriction on the maximum
number of datasets per file. The file extension is MSF which means MultipleScalesFile.
The structure is straight forward:

9

3 The sections

[Scale Begin]
; The data of the first scale dataset
[Scale End]

[Scale Begin]
; The data of the second scale dataset
[Scale End]

[Scale Begin]
; The data of the third scale dataset
[Scale End]

; ...and so on...

If for a MIDI channel no scale is specified, the default tuning is used. If two scales
apply to the same MIDI channel, the first scale in the file is used.

IMPORTANT: If a scale does not have an [Assignment] section with MIDI channel
restrictions, it is considered applicable to each MIDI channel. Thus all following scales
in the MSF-File are ignored!

3.2.4 Embedding scales in e.g. HTML

As all lines outside

[Scale Begin]
; Data of the scale dataset
[Scale End]

are ignored, it is possible to embed scale datasets in other text files such as e.g. HTML:

<HTML>
<BODY>

Here I can write something about the scale.
I can open the file directly with my browser
viewing the description and open the same
file directly in my music software.

As long as no line starts with a ’[’ the
lines are ignored.

<!--

10

3 The sections

I don’t wanna see the scale date in the browser,
therefore I put it into a HTML comment.

So here’s the scale dataset:

[Scale Begin]
; Data of the scale dataset
[Scale End]

I can embed more than one scale in the file,
thus it becomes a Multiple Scales File (MSF):

[Scale Begin]
; Let’s have another one here...
[Scale End]

-->
</BODY>
</HTML>

Maybe you want downwards compatibility. To embed a scale dataset so that even
older software supporting only AnaMark/VAZ 1.5 Plus tuning files (= version 1) can
deal with it, you a restricted to one scale per file and have to consider a few limitations.
Here is how it looks like:

<HTML>
<BODY>

Let’s see how scale embedding is done
downwards compatible...

According to the version 1 specs, everything
trailing the first section has to be ignored,
so we are free to write anything here as
long as it does not look like a section.

<!--
I don’t wanna see the scale date in the browser,
therefore I put it into a HTML comment.

So here’s the scale dataset:

11

3 The sections

[Scale Begin]
; Data of the scale dataset
[Scale End]

; To ensure, that the rest of the file does
; not produce an error we have to put it
; into a comment:
; --></BODY></HTML>

Note, that you should not write this:

; -->
; </BODY>
; </HTML>

This will make the ’;’ visible in your browser and may corrupt your HTML syntax.
As an alternative you can fake the key = value syntax. Unknown keys are ignored
according to the version 1 specs, thus we are fine writing:

FakeKey = --></BODY></HTML>

To distinguish files containing embedded scales, put an extra ".tun" before the
original file extension. The file in the above example may be called MyEmbeddedScale-
File.tun.html. To filter a list of files for embedded scales use the filter "*.tun.*".

3.3 Section [Info]

<Required in version 2.00> The section

[Info]

contains informations associated with the scale. The keys are:

• Name = string value <required>

Default value: file name

Name of the scale

• ID = string value <required>

Default value: "ID_" + file name without spaces

A shorter alternate identifier. It must begin with an alphabetic character (a–z or
A–Z) or an underscore and must not contain white spaces.

12

3 The sections

• Filename = string value <recommended>

Default value: current file name without the extension

Filename suggested for the scale without the extension. When putting multiple
scales together in one file this gives the ability to re-extract them with their
original file names.

• Author = string value <optional>

Default value: empty string

Who created the scale

• Location = string value <optional>

Default value: empty string

Where the author resides

• Contact = string value <optional>

Default value: empty string

Contact information of the author

• Date = string value <optional>

Default value: empty string

Creation date of the scale. Date format is YYYY-MM-DD, according to ISO 8601.

• Editor = string value <optional>

Default value: empty string

Software used to create/edit the file/scale.

• EditorSpecs = string value <optional>

Default value: empty string

URL containing the specs of the section [Editor Specifics] (see 3.9).

• Description = string value <optional>

Default value: empty string

Description of the scale.

• Keyword = string list entry <optional>

Default value: empty string list

Keywords which may help categorizing the scale.

13

3 The sections

• History = string value <optional>

Default value: empty string

Description of the "historical context" of the scale.

• Geography = string value <optional>

Default value: empty string

Description of the "geographical context" of the scale.

• Instrument = string value <optional>

Default value: empty string

Description of the instrument the scale is typical for.

• Composition = string list entry <optional>

Default value: empty string list

Compositions in which the scale was used. Format:

Musician or Band|Album|Title|Year|Misc

As the ’|’ is the separator, it is not allowed within the field values.

• Comments = string value <optional>

Default value: empty string

Comment for additional informations not covered by the other keys.

3.4 Section [Assignment]

<Optional> The section

[Assignment]

is intended for files containing multiple scales (MSF-Files, see 3.2.3) to assign the
current scale dataset to MIDI channels. However, it can also be used in TUN files
containing single scales only.1 The keys are:

1If a software supports only standard single scale TUN files, it might ignore this setting and take the
scale valid for each MIDI channel. If a software supports MSF-Files, it has to consider this field in
TUN-files too.

14

3 The sections

• MIDIChannels = string value <optional>

Default value: empty string

Defines the MIDI channel(s) where the scale is to be applied. A scale can be
assigned to multiple MIDI channels or to a range of MIDI channels, e.g.:

MIDIChannels = "1-3,5,7"

This assigns the scale to the MIDI channels 1 to 3, 5 and 7. The range of MIDI
channel numbers is from 1 to 65535. If the key is not specified or an empty string
is given, the scale is applied to each MIDI channel.

3.5 Section [Tuning]

<Recommended to provide version 0 data> The section

[Tuning]

contains a quantized scale in cents (integer values). The keys are:

• note x = integer value <required>

Default value: 100 · x
x denotes the MIDI note number (No keyboard mapping supported here!). Keys
must be given for each note number from 0–127. If a note is missing, this
may produce a warning. The value is the relative tuning in cents referred to
8.1757989156437073336 Hz (corresponds to the standard tuning A=440 Hz (’A’ is
MIDI note 69).

Example for a valid [Tuning] section representing the default settings:

[Tuning]
note 0 = 0
note 1 = 100
note 2 = 200
; This has to be continued for each note
; in the range 3-127, including 127

This section has the lowest priority of all tuning sections. This means: It is ignored
if any of the sections [Exact Tuning] or [Functional Tuning] is given.

15

3 The sections

3.6 Section [Exact Tuning]

<Recommended for version 1 downwards compatibility> The section

[Exact Tuning]

contains an exact scale in cents (scientific values). It additionally provides a base
frequency and autocomplete functionality for periodic scales. The keys are:

• BaseFreq = scientific value <optional>

Default value: 8.1757989156437073336

The absolute frequency in Hz. Its default value corresponds to the standard
tuning A=440 Hz (’A’ is note 69).

• note x = scientific value <optional>

Default value: 100 · x
x denotes the MIDI note number and lies in the range 0–127 (No keyboard
mapping supported here!) The value is the relative tuning in cents referred to
BaseFreq.

After processing the [Exact Tuning] section, auto completion is performed as
described in the following section

This section has medium priority. This means: It overwrites the values given in an
[Tuning] and is ignored if the section [Functional Tuning] is given.

3.6.1 Auto completion (Periodic scales)

Let H be the highest MIDI note number explicitly specified in the section, let P be its
tune given in the file (called P, because it is the period length). f(x) is the current tune
value of the note with the MIDI note number x, which is initially set to the values
given in the file.

First ensure that the tunes f(x) of all scale notes in the range [0; H] which are not
set in the file represent the default values 100*x. Then complete the tunings [H; 127]
according to this algorithm:

if (H < 127) then
from i=H to i=127 including 127, stepsize 1 do:

Let f(i) = f(i-H) + P
end from

end if

16

3 The sections

3.6.2 Example of a valid section

Example for a valid "[Exact Tuning]" section using auto completion:

; All ’E’ should be tuned +12.5 cents compared with
; the default scale. All other notes should have the
; default tuning.

[Exact Tuning]
; Set the tune of the first E:
note 4 = 412.5
; To let the period be one octave,
; we have to set the "periodic point":
note 12 = 1200

3.7 Section [Functional Tuning]

<Required for version 2.00> The section

[Functional Tuning]

contains a more versatile definition of the scale which also allows some exact algorith-
mic calculations. The keys are:

• note x = string value <optional>

Default value: ""

x denotes the scale note number and lies in the range 0–127 (Here, keyboard
mapping is supported, thus x does NOT represent the MIDI note number!)
Definition of the formula to calculate the notes frequency.

The following function calls are available:

• InitEqual = (BaseNote,BaseFreqHz) <optional>

BaseNote: integer value

BaseFreqHz: scientific value

Set the frequency f (x) of each note x to

f (x) = BaseFreqHz · 2 x−BaseNote
12 (3.1)

When the section is entered a virtual function call

17

3 The sections

InitEqual = (69,440)

must be executed which leads to the standard tuning A=440 Hz (’A’ is note 69).
This section has highest priority. This means: It overwrites the values given in any

of the other tuning sections ([Tuning] or [Exact Tuning]).

3.7.1 Formula syntax

In a formula you can define parameters for an equation to calculate the note frequency.
Furthermore there are special command tokens, explained later on.

The frequency assigned to a note x when a key note x is found, is calculated using
the equation

f (x) = fRange ·
MUL
DIV

· 2CENTS/1200 + fShift (3.2)

where x denotes the index of the current note and f (x) their frequency in Hz. The
default values are:

fRange = f (x)

MUL = 1
DIV = 1

CENTS = 0 cents
fShift = 0 Hz (3.3)

In the formula string, the variables of this equation are referred to by one-char tokens
followed by the value of the variable (spaces are allowed to improve readability). The
tokens and their meaning are:

• ’#’ = fRange (Frequency range in Hz)

• ’*’ = MUL (Multiplication factor)

• ’/’ = DIV (Divisor)

• ’%’ = CENTS (Value in cents by which the frequency is increased)

• ’+’ = fShift (Frequency shift in Hz)

After the tokens, the values are given directly as positive or negative float value, e.g.
"123.456". However, fRange and fShift can also be given by reference:

• As absolute reference to another note’s frequency. The value is an integer pre-
ceeded by ’=’.

18

3 The sections

• As relative reference to another note’s frequency. The value is an integer pre-
ceeded by ’>’.

IMPORTANT: If a token is found more than once in the formula string, only the last
occurence will be effective! But you may use the same key several times alternating a
notes frequency by self-reference.

An example will demonstrate the possibilities:

InitEqual = (0,8)
note 0 = ""
note 1 = "*2 /3"
note 2 = "#>-1 %1200 +-3"
note 3 = "#=1"
note 1 = "*3 /2"

This results in

f (0) = 8 Hz
f (1) ≈ 8.4757 Hz
f (2) ≈ 8.3010 Hz
f (3) ≈ 5.6505 Hz (3.4)

as

1. InitEqual = (8)

Initialize scale using 8Hz as base frequency, this means:

f (0) = 8 Hz
f (1) ≈ 8.4757 Hz
f (2) ≈ 8.9797 Hz
f (3) ≈ 9.5137 Hz (3.5)

...and so on...

2. note 0 = ""

Let note 0 be where it is as placing the default values eq. (3.3) into eq. (3.2) gives:

f (0) = 8 Hz · 1
1
· 20/1200 + 0 Hz = 8 Hz (3.6)

3. note 1 = "*2 /3"

19

3 The sections

⇒ f (1) = f (1) · 2
3
· 20/1200 + 0 Hz

≈ 8.4757 Hz · 2
3

= 5.6505 Hz (3.7)

4. note 2 = "#>-1 %1200 +-3"

⇒ f (2) = f (2− 1) · 1
1
· 21200/1200 + (−3 Hz)

≈ 5.6505 Hz · 2− 3 Hz = 8.3010 Hz (3.8)

5. note 3 = "#=1"

⇒ f (3) = f (1) · 1
1
· 20/1200 + 0 Hz

= 5.6505 Hz (3.9)

6. note 1 = "*3 /2"

⇒ f (1) = f (1) · 3
2
· 20/1200 + 0 Hz

≈ 5.6505 Hz · 3
2

= 8.4757 Hz (3.10)

3.7.2 Formula command tokens

The followin command tokens can be used in formulas:

• ’~’ = loop

• ’!’ = ensure frequency in Hz by shifting the scale

An example for the loop token:

note 3 = "*2 ~5"
note 100 = "*3 ~-3"

is equivalent to:

20

3 The sections

note 3 = "*2"
note 4 = "*2"
note 5 = "*2"
note 6 = "*2"
note 7 = "*2"
note 100 = "*3"
note 99 = "*3"
note 98 = "*3"

This can be used for periodic scales. Assume that your scale is the equal tempered
scale except that all notes A are detuned by +22 cents. You can do it like this:

note 9 = "%22"
note 21 = "%22"
note 33 = "%22"
note 45 = "%22"
note 57 = "%22"
note 69 = "%22"
note 81 = "%22"
note 93 = "%22"
note 105 = "%22"
note 117 = "%22"

or much shorter:

note 9 = "%22"
note 12 = "#>-12 *2 ~116"

If a function is to be looped until the begin or end of the available notes, use ~-999 or
~999, respectively. So you don’t need to calculate exactly how many notes are left and
you can write:

note 9 = "%22"
note 12 = "#>-12 *2 ~999"

Finally, the token ’!’ shifts the scale, so that the current note has the given frequency
in Hz. Assume that your scale looks like this:

f (0) = 8 Hz
f (1) = 9 Hz
f (2) = 10 Hz
f (3) = 11 Hz (3.11)

then entering

21

3 The sections

note 2 = "!440"

will result in

f (0) = 352 Hz
f (1) = 396 Hz
f (2) = 440 Hz
f (3) = 484 Hz (3.12)

So, if you want to ensure that in any case, the note A equals 440 Hz, just put

note 69 = "!440"

at the end of your scale definition.
IMPORTANT: The token ’!’ must be the only token in the formula. Other tokens

might be ignored, thus the result is not defined!

3.8 Section [Mapping]

<Optional> The section

[Mapping]

defines the keyboard mapping of the scale defined in the section [Functional Tuning]2

MIDI note number sent→ scale note number sounding

The keys are:

• Keyboard x = integer value <optional>

Default value: x

x denotes the MIDI note number sent, the integer value assigned denotes the
scale note number sounding.

• LoopSize = integer value <optional>

Default value: 0

The keyboard mapping is looped, if LoopSize > 0. The value N(x) for the key
Keyboard x with x ≥ LoopSize is

Octave = int(x / LoopSize)
Offset = x mod LoopSize

N(x) = N(Offset) + Octave · LoopSize (3.13)

2It is not to be applied to the sections [Tuning] and [Exact Tuning]!

22

3 The sections

3.9 Section [Editor Specifics]

<Optional> The section

[Editor Specifics]

allows the scale editor to store editor specific informations. It must not be placed ahead
the section [Info] but somewhere behind it as its contents depend on the key Editor
there!

The software is free to place any kind of textual content here but must ensure that
there is no line beginning with a ’[’!

23

4 Acknowledgments

I am grateful to Aaron Andrew Hunt for his critical remarks and suggestions, especially
concerning the database part of these specifications: the key definitions are arranged
with the TuningXML format.

24

	Introduction
	Format history and Compatibility

	Basic file structure
	Sections
	Key-value pairs
	Function calls

	The sections
	Overview
	Begin and end of a scale dataset
	Section [Scale Begin]
	Section [Scale End]
	Files containing multiple scales (*.MSF files)
	Embedding scales in e.g. HTML

	Section [Info]
	Section [Assignment]
	Section [Tuning]
	Section [Exact Tuning]
	Auto completion (Periodic scales)
	Example of a valid section

	Section [Functional Tuning]
	Formula syntax
	Formula command tokens

	Section [Mapping]
	Section [Editor Specifics]

	Acknowledgments

